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a b s t r a c t 

Geometric uncertainties may jeopardize the performance of parallel manipulators, espe- 

cially during motion planning. Recent research demonstrated that, during motion plan- 

ning and due to uncertainties, manipulators may accidentally assume low performance 

or singular configurations. Thus, reliable motion planning algorithms are required. Very 

few algorithms were proposed to avoid such problem in parallel manipulators. This pa- 

per presents a reliable motion planning technique. First, failure modes are defined. Then, 

a Monte Carlo simulation is used to provide information on how the manipulator’s uncer- 

tainties affect its conditioning. Based on this simulation, probabilities of failure are com- 

puted for several manipulator workspace configurations. After that, an artificial neural net- 

work metamodel is trained to overcome Monte Carlo’s computational inefficiency on the 

failure probability estimation. This metamodel is assessed by an iterative strategy that ex- 

ploits genetic operators to compute optimal trajectories avoiding regions that are consid- 

erably affected by uncertainties. Due to its modular methodology, the technique can be 

easily adapted for different applications. A 3 R RR manipulator is used as a case study. 

© 2019 Published by Elsevier Ltd. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Parallel manipulators present several advantages over serial ones, such as higher dynamic performance [1] , the possibil-

ity of lower energy consumption [2,3] , and higher precision [4] . However, parallel manipulators have singularities in their

workspace. In kinematic models of parallel manipulators, the actuator’s ˙ � and the effector’s ˙ X velocities are related by two

Jacobian matrices, A ̇

 X = B 

˙ �. In this context, three types of singularities can occur [5] . Singularities of type I occur when the

Jacobian matrix B becomes singular, while type II occur when the Jacobian matrix A is singular. Type III singularities happen

when both A and B become simultaneously singular. Singularities can be treated as obstacles and should be avoided during

motion planning. Recently, promising techniques that allow motion in singular regions with bounded torques and stable

motion under some criteria have been proposed. Among these techniques, Ider [6] exploited higher order derivatives of the

kinematic quantities, while Briot and Arakelian [7] used optimal dynamic conditions. Parsa et al. [8] proposed a strategy

that used active masses to allow a 2-RPR planar parallel manipulator to pass through singularities. The strategy employs the

condition number to measure the closeness between the manipulator and a singularity. When close enough, main actuators

are turned off while mass actuators are turned on. Once the robot is far from singularities, main actuators become active
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and the mass actuators are carefully moved to their initial position, where they are turned off. Özdemir [9,10] explored mass

actuators in a payload placement problem, countering the loss of rigidity in the vicinity of singularities and in the manipu-

lator’s balancing following inconsistent trajectories. The concept of limit was explored in [11] to remove drive singularities

from the inverse dynamics of parallel manipulators. Briot et al. [12] presented physical criteria to pass through serial and

drive singularities. In the control design field, uncertainty is used to robustify the system’s performance and stability. This

issue has been treated for deriving control strategies for enlarging the workspace of parallel manipulators by enabling the

singularity crossing in references [13–15] . 

Dexterity indices are commonly used in motion planning to evaluate the closeness between the manipulator’s posture

and a singularity [16,17] . A widely used dexterity index is the inverse of the condition number of the Jacobian matrix

( ICN ), also referred to as conditioning. This index should be used consciously since inconsistent ICN values can be found for

manipulators with rotational and translational degrees of freedom (DOF) [18,19] . This issue happens because the Jacobian

matrix is dimensionally heterogeneous for this kind of manipulators. Additionally, the ICN has a nonlinear behavior along

the workspace, which may lead to a misinterpretation of the distance to singularities. As shown in [18] , the condition

number does not exhibit a consistent behavior with respect to the accuracy of manipulators. An alternative for measuring

the closeness between a manipulator’s posture and a singular configuration based on motion/force transmissibility has been

proposed by Liu et al. [20] . 

Parallel manipulators are subject to uncertainties. Techniques based on Monte Carlo algorithms [21–24] , and interval

analysis [25,26] are commonly used to evaluate the influence of uncertainties in the performance of parallel manipulators.

Uncertainties may induce failures, which are critical in extreme environments, such as space/sea explorations, and military

applications [27–29] . This reinforces the need for fault-tolerant manipulators, which usually employ failure detection and

recovery techniques. Three failure modes of parallel manipulators are widely employed: locked joint, torque and hard fail-

ures. Techniques for analysis and recovery of joint locked failures are abundant [29–33] . Many overcome these failures by

exploring kinematic redundancy benefits [28,34] and analyzing/optimizing the relative manipulability index [17,33] . Locked

joint failures may cause singularities [31] , demanding reliable or robust motion planning algorithms. These techniques have

been widely applied to robotics, in fields like autonomous vehicles [35] , UAVs [36,37] , mobile manipulators [38] and serial

manipulators [39,40] . However, robust motion planning techniques for parallel manipulators are scarce. 

The performance of parallel manipulators is commonly analyzed using performance indices [17] . Manipulators usually

have minimum and/or maximum performance requirements (e.g. ICN , speed, torque, precision). However, the influence of

uncertainties may jeopardize their performance during motion planning, leading manipulators to low performance or sin-

gular regions. Since both occurrences are failures, reliable strategies must be employed. Information about the probability

of failure for a manipulator, or for postures, is extremely useful for decision making. This information can be used, for

instance, in the design process and/or motion planning. In [41] , low-performance or singular regions related to type II sin-

gularity cases are classified as failure zones by exploiting the ICN as a performance index. The impact of uncertainties is

evaluated using the probability of failure of each manipulator’s posture for a predefined working mode. The probabilities

are estimated using a Monte Carlo algorithm. The technique was used to assess the impact of geometrical uncertainties in

the conditioning of a 3 R RR manipulator. Despite the issues regarding the use of ICN for measuring the closeness between a

manipulator’s posture and a singular configuration, high conditioning regions which are close to singularities may present a

high probability of failure, as discussed in [42] . This result indicates that the use of the ICN can be a suitable alternative for

evaluating the probability of failure regarding the type II singularity cases. A drawback of the technique is that the Monte

Carlo algorithm is computationally expensive. To overcome this issue, Vieira and da Silva [43] proposed the design of an ar-

tificial neural network metamodel to efficiently estimate the probabilities of failure of the manipulator. In the present paper,

a reliable motion planning algorithm is proposed by combining a metamodel and an iterative strategy that exploits genetic

operators. The proposal aims to avoid regions that are highly sensitive to uncertainties and navigate through regions that

have both high/acceptable conditioning and low/null probability of failure. Only geometric uncertainties in the links’ lengths

are considered and a 3 R RR planar parallel manipulator is used as a case study. One advantage of this technique is that it is

easily extended to different failure modes, considering different performance measures. Moreover, the probabilities of failure

have the potential to be used in several motion planning strategies, redundancy resolution algorithms, and optimal design

problems. 

The paper is structured as follows: Section 2 describes the steps of the proposed strategy for deriving a reliable motion

planning, Section 3 details the manipulator under study, Section 4 discusses the main findings in this work, and conclusions

are drawn in the last section. 

2. Methodology 

The reliable motion planning proposed in this work seeks to avoid configurations not only with low conditioning, but

also with high probability of failure by solving an optimization problem. The proposal requires definition of the failure

modes and assessment of the probability of failure for any manipulator’s configuration. The calculation of the probability of

failure during the solution of the optimization problem is performed by a metamodel. Firstly, the definition of failure modes

is presented. Secondly, the metamodel exploited in reliable motion planning is derived. Lastly, the reliable motion planning

technique is presented. 
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Fig. 1. Steps for obtaining the training/testing data for deriving the ANN metamodel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1. Definition of the failure modes 

During motion planning, the inverse of the condition number of the Jacobian matrix ( ICN ) is commonly used as a dex-

terity index [44–47] . The ICN assumes values between 0 and 1, where a null value represents a singularity and a unit value

represents an isotropic posture. In this way, motion planning algorithms must drive the manipulators through high ICN pos-

tures, avoiding ill-conditioned regions. Vieira et al. [41] classify the well and ill-conditioned regions by using a critical ICN

value ( CICN ). This threshold value may be defined heuristically and usually depends on the task. In this way, the manipu-

lator shall operate in regions/postures with ICN values that are greater than the CICN . If this constraint is violated, a failure

occurs. 

The end-effector is analyzed in a pose X , which lies inside the workspace. In each pose, the manipulator has several

inverse kinematic solutions. Each solution is represented by a working mode. In this paper, the manipulator operates in

one of its working modes. Under these circumstances, the manipulator’s posture is assumed to have conditioning ICN ( X ).

However, due to uncertainties (e.g. geometrical uncertainties), the real/exact conditioning is ICN e ( X ). It is possible to keep

ICN ( X ) > CICN , as desired. Nevertheless, there is no guarantee that ICN e ( X ) > CICN . Consequently, two failure modes arise

[41] : 

1. ICN failure - occurs when ICN ( X ) > CICN , but 0 < ICN e ( X ) ≤ CICN . This failure drives the manipulator to ill-conditioned

regions, jeopardizing its precision; 

2. Workspace or singularity failure - occurs when ICN ( X ) > CICN and ICN e (X ) = 0 . In this case, the manipulator assumes

a singular configuration. Due to modelling errors, it is possible that X is no longer in the workspace. This is counted

as a workspace failure as well. 

It is important to point out that the aforementioned failure modes can be combined with other performance indices, as,

for instance, those presented in [17,48] . For instance, the use of ICN as a performance index does not impose any limitation

on the power required for performing the task. This can be included by considering the kinodynamic planning proposed by

Bordalba et al. [48] . Nevertheless, Fontes et al. [49] demonstrated experimentally the importance of including the condition-

ing as a performance index in redundancy resolution schemes. This inclusion promoted the reduction of the required torque

for the execution of a selected task. 

2.2. Derivation of the metamodel 

The proposed reliable motion planning is based on an optimization problem. In this problem, the probability of failure,

P F ( X ), has to be calculated for each pose, X . This calculation is performed by a metamodel in order to reduce the computa-

tional effort s. This met amodel is derived by training an artificial neural network (ANN). 

The training and testing data for deriving this metamodel is acquired by assessing the probability of failure for several

configurations in the workspace. Fig. 1 shows the steps for obtaining this data. Firstly, the workspace is discretized in several

configurations, X . Secondly, a Monte Carlo simulation is performed for assessing the possible ICN values for each configu-

ration considering geometrical uncertainties. Finally, for each X , the probability of failure is calculated. In this section, the

Monte Carlo simulation, the calculation of the probability of failure and the training of the metamodel are described. 

2.2.1. Monte Carlo simulation 

The determination of an analytic expression for the probability of failure of a configuration X is complex. A Monte Carlo

simulation is employed instead. In order to proceed with the simulations, the uncertain variables must be specified and

their probability density function must be known. Every uncertain variable is represented by u i , i = 1 . . . s, where s is the

number of uncertain variables. These variables are represented by a vector U = [ u 1 , · · · , u s ] 
T . In this paper, U is composed of

the links’ lengths of the manipulator. The Jacobian matrix is represented by J ( X, U ). Note that, since U is a random vector,

J ( X, U ) is a random matrix. During a Monte Carlo simulation, X and a random vector U are used to compute ( ICN ( J ( X, U ))). n s
simulations are performed, resulting in n s values of ICN (recall that only one working mode is considered). The probability

of failure is computed based on the resulting ICN ( X ) values. 
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2.2.2. Probability of failure 

The probability of an ICN failure is represented by P ICN ( X ), while the probability of a workspace failure by P WS ( X ). P F ( X )

stands for the total probability of failure, considering both failure modes. All probabilities are computed based on the ICN ( X )

values resulting from the Monte Carlo. simulation The probability of a workspace failure P WS ( X ) is determined by: 

P W S (X ) = 

n W S 

n s 
, (1) 

where n WS is the number of workspace failures detected during Monte Carlo simulation. The values of P ICN and P F can be

determined by two approaches: (i) simple count or (ii) probability density function estimation. In approach (i), P ICN ( X ) and

P F ( X ) are, respectively, determined by: 

P ICN (X ) = 

n ICN 

n s 
, (2) 

P F (X ) = P ICN (X ) + P W S (X ) , (3) 

where n ICN is the number of ICN failures arisen in the Monte Carlo simulation. In approach (ii), a fitting function is applied

to estimate the probability density function ( F ( ICN ( X ))) that best fits the nonzero ICN ( X ) values obtained from the Monte

Carlo simulation. Accordingly, P ICN ( X ) and P F ( X ) are computed by the following equations, respectively: 

P ICN (X ) = 

∫ C IC N 

0 

F (I CN(X )) dI CN, (4) 

P F (X ) = P W S (X ) + (1 − P W S (X )) P ICN (X ) . (5)

In approach (i), as n s → ∞ , P F ( X ) approaches its exact value. On the other hand, if the task’s CICN change, all data acquired

in the Monte Carlo simulation will need to be reanalyzed, which increases computational cost and memory requirements,

due to data storage. The approach (ii) requires much less memory since it needs to store information about F ( ICN ( X )) only,

usually represented by a few parameters. Additionally, if the CICN changes, the P ICN value is easily computed using Eq. (4) .

However, the approach (ii) is not so accurate as the approach (i) due to errors in the fitting process. 

2.2.3. Metamodelling 

As aforementioned, the Monte Carlo simulation is computationally inefficient, which may hinder real-time applications.

This issue is overcome by constructing a metamodel. The main objective of this metamodel is to efficiently estimate the

probability of failure of each manipulator’s configuration in the workspace. Techniques like ANN, kriging and support vector

regression may be employed [50] . In this work, an ANN metamodel was designed. Firstly, several configurations are sampled

in the manipulator workspace using a multidimensional grid, considering one working mode, with a resolution r s . For each

pose sample, a Monte Carlo simulation is performed and the probability of failure is computed. The ANN inputs are the end-

effector’s configuration X and ICN ( X ); the output is P F ( X ). It is up to the designer to define the ANN architecture, topology,

activation functions and additional parameters that best suits the problem requirements. 

The metamodel enhances efficiency in detriment of accuracy in the estimation. Consequently, there is a chance that the

metamodel provides an imprecise estimation. In cases where the manipulator is symmetric, symmetry may be explored to

avoid outliers in the estimation process. The probability of failure estimated by the metamodel is represented as P̄ ANN 
F 

(X ) . 

As previously described, the metamodel is usually much faster than the Monte Carlo simulation. Nevertheless, it still

demands some computational effort. Thus it is possible to decrease the estimations computational cost by avoiding the

estimation of P̄ F (X ) of configurations where ICN ( X ) ≤ CICN . For these configurations, it is considered that P̄ F (X ) = 1 , as they

must be avoided due to performance restriction. In this case, the probability of failure is restated as: 

P̄ F (X ) = 

{
1 , if ICN(X ) ≤ C IC N 

P̄ ANN 
F (X ) if ICN(X ) > C IC N 

(6) 

Alternatively, it is possible to employ the Reliable CICN instead of the CICN , as presented in [42] . Its value is determined

through an optimization that balances the compromise between the manipulator’s workspace size and the average proba-

bilities of failure. If the Reliable CICN is used, Eq. (6) is restated as: 

P̄ F (X ) = 

{
1 , if ICN(X ) ≤ Reliable C IC N 

P̄ ANN 
F (X ) if ICN(X ) > Reliable C IC N 

(7) 

2.3. Reliable motion planning 

The proposed strategy aims to find an optimal set of n wp configurations that take the manipulator from an initial position

to its destination, avoiding configurations that have a considerable probability of failure. The proposed optimization problem

is solved by an iterative strategy based on genetic algorithm procedures. This iterative procedure seeks for a set of n wp con-

figurations, denoted as waypoints. These waypoints can be collected in a matrix X 

j = { X 

j 
0 
, X 

j 
1 
, X 

j 
2 
, · · · , X 

j 
n wp 

, X 

j 
n wp +1 

} , which
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Fig. 2. The flowchart of the proposed reliable motion planing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

describes the task to be executed by the manipulator. The index j represents a possible solution, denoted as an individual.

The initial and the final configurations are given by X 

j 
0 

and X 

j 
n wp +1 

, respectively. In this work, a population is composed of

a set of p ga individuals. In this way, j = 1 . . . p ga . 

The proposed reliable motion planning is composed of the following steps, illustrated in Fig. 2 : 

1. Generate the initial population . The initial population is composed of p ga individuals, randomly selected through a

uniform distribution. In this way, any configuration in the workspace can be equally selected to compose the initial

population. Waypoints are connected by line segments. So, it is possible that the algorithm will produce line segments

that are not entirely inside the workspace. Thus, a procedure named hit-or-miss is used to guarantee that all waypoints

and segments are inside the workspace. A pseudocode is presented in Algorithm 1 for describing the hit-or-miss

procedure. 

Algorithm 1 Hit-or-miss. 

1: if The segment of line conecting X 

∗
k 

and X 

∗
k +1 

is inside the workspace then 

2: Hit-or-miss is V alid 

3: else 

4: Hit-or-miss is In v alid 

5: end if 

2. Evaluate the cost function and sort p ga individuals . Two weighted cost functions, denoted as C unreliable ( X 

j ) and C reliable ( X 

j ),

are used for evaluating each individual, X 

j where j = 1 . . . p ga , in the unreliable and reliable motion planning strate-

gies. The objective of the iterative procedure is to seek for individuals with the highest cost function values. In the

unreliable motion planning strategy, each individual X 

j is evaluated by the following cost function: 

C unrel iabl e (X 

j ) = λu 

μ j 
ICN 

υ j 
unr D j 

, (8)

where the term μ j 
ICN 

attempts to ensure the avoidance of singular regions and the term D j seeks to spread out the

waypoints evenly in the trajectory. λu is a constant used to scale the values in the display of the results. The variable

υ j 
unr is a penalty applied to the cost of X 

j when a waypoint assumes a nominal ICN value lower than the CICN . It is

computed by 

υ j 
unr = v 

(n j 
f 1 

+ v 2 n j f 2 
) 
, (9)
1 
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Fig. 3. The flowchart of the creation of a new pair of individuals using genetic operators. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where v 1 > 1 and v 2 ≥ 0 are constants and n 
j 

f 1 
and n 

j 

f 2 
are the number of ICN and workspace failures in X 

j , respec-

tively, considering the nominal ICN and the CICN . For instance, if two waypoints in X 

j have nominal ICN = 0 and other

three waypoints have conditioning 0 < ICN ≤ CICN , then n 
j 

f 1 
= 3 and n 

j 

f 2 
= 2 . 

The mean of the ICN values, μ j 
ICN 

, for an individual X 

j can be calculated by 

μ j 
ICN 

= 

∑ n wp +1 

k =0 
ICN(X 

j 

k 
) 

n wp + 2 

. (10) 

The term D j can be calculated by 

D j = 

( 

n wp ∑ 

k =0 

∥∥M (X 

j 

k +1 
− X 

j 

k 
) 
∥∥) ( 

n wp ∑ 

k =0 

∥∥M (X 

j 

k +1 
− X 

j 

k 
) 
∥∥2 

) 

, (11) 

where the diagonal matrix M is used to homogenize different physical units in X 

j 

k 
, where k = 0 , . . . , n wp + 1 . 

In the reliable motion planning strategy, each individual X 

j is evaluated by the following cost function 

C rel iabl e (X 

j ) = λr 

2 − μ j 

P̄ F 

υ j 

rel 
∗ D j 

, (12) 

where the term 2 − μ j 

P̄ F 
attempts to ensure the avoidance of regions with high probabilities of failure. λr is a constant

used to scale the values of the optimization results. The penalty υ j 

rel 
is computed though 

υ j 

rel 
= v 

n j 
f 3 

+ v 2 n j f 2 

1 
. (13) 

where n 
j 

f 3 
is the number of waypoints of X 

j whose ICN are greater than zero and lower than the Reliable CICN . The

average probability of failure of the waypoints of X 

j , represented by μ j 

P̄ F 
, can be calculated by 

μ j 

P̄ F 
= 

∑ n wp +1 

k =0 
P̄ F (X 

j 

k 
) 

n wp + 2 

. (14) 

An important remark is that the probabilities of failure are computed in both unreliable (see Eq. (6) ) and reliable (see

Eq. (7) ) techniques. However, the probabilities of failure are not taken into account in the unreliable approach. These

probabilities are only used for the comparison between both techniques. Another remark is the difference between

n 
j 

f 1 
and n 

j 

f 3 
. The variable n 

j 

f 1 
is determined using the CICN . Differently, the Reliable CICN is applied to determine n 

j 

f 3 
. 

The p ga individuals of a population are sorted using the cost function value as a criterion. This sorting is made in

ascending order. 

3. Convergence criteria . The algorithm stops when the maximum number of generations g max is achieved or when the

optimal solution remains unmodified over 0 . 1 g max generations. 

4. Create pairs of new individuals . New pairs of individuals are created by exploiting genetic-like operators. A new pair is

created by selecting two individuals using the roulette-wheel selection approach. These new individuals are modified

according to crossover-like and mutation-like operators. These genetic-like operators, illustrated in Fig. 3 are described

in details hereafter. 

5. Substitute the worst pair of individuals by the new one . The two worst individuals of the population are substituted by

those resulting from the genetic-like operators. Then, the new individuals are evaluated and the population is resorted

according to the diagram shown in the flowchart in Fig. 2 . 

Genetic-like operators are exploited for the creation of a new pair of individuals. The flowchart of this strategy is illus-

trated in Fig. 3 . The two individuals with the worst cost ( C ∗ ) in the population are substituted by these two new individuals,

denoted as X 

m 1 and X 

m 2 . The genetic-like operators have been implemented as follow: 

1. Roulette-wheel selection Two individuals from the actual population are selected using the roulette-wheel approach.

The probability of an individual, X 

j , to be selected is [51] : 

P roulette −wheel (X j ) = 

C ∗(X j ) ∑ p ga C ∗(X k ) 
; (15) 
k =1 
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where ∗ can be unreliable or reliable depending on the selected strategy. These selected individuals are denoted as,

X 

r 1 and X 

r 2 , with r 1 � = r 2 . 

2. Crossover-like operator Two new individuals, X 

c 1 and X 

c 2 , are generated by exploiting the single-point crossover ge-

netic operator [51] to the two selected individuals by the roulette-wheel selection procedure. The crossover point,

a integer number n cr ∈ [1 , n wp − 1] , is selected randomly. The new individuals are generated according to the pseu-

docode presented in Algorithm 2 . 

Algorithm 2 Crossover-like operator. 

Select randomly an integer ( n cr ) between 1 and (n wp − 1) 

2: Apply Hit-or-miss in (X 

r 1 
n cr 

, X 

r 2 
n cr +1 

) and (X 

r 2 
n cr 

, X 

r 1 
n cr +1 

) 

if Both results are V alid then 

4: X 

c 1 ← { X 

r 1 
0 

, X 

r 1 
1 

, . . . , X 

r 1 
n cr 

, X 

r 2 
n cr +1 

, . . . , X 

r 2 
n wp 

, X 

r 2 
n wp +1 

} 
X 

c 2 ← { X 

r 2 
0 

, X 

r 2 
1 

, . . . , X 

r 2 
n cr 

, X 

r 1 
n cr +1 

, . . . , X 

r 1 
n wp 

, X 

r 1 
n wp +1 

} 
6: else 

X 

c 1 ← X 

r 1 

8: X 

c 2 ← X 

r 2 

end if 

3. Mutation-like operator The mutation-like operator is applied in each individual resulted from the crossover-like oper-

ation. The operator substitutes waypoints randomly with a probability p mutation , considering a Gaussian Multivariate

Distribution N (�, �) , given by 

� = 

⎡ 

⎣ 

X 

j 

k 
(1) 0 0 

0 X 

j 

k 
(2) 0 

0 0 X 

j 

k 
(3) 

⎤ 

⎦ , (16)

� = 

[ 

v ar x 0 0 

0 v ar y 0 

0 0 v ar α

] 

, (17)

where var x , var y and var α are the variances of x, y and α, respectively. The outputs of this operator, represented

by X 

m 1 and X 

m 2 , replace the two individuals with lower cost in the population. The pseudocode described by the

Algorithm 3 details this operator. 

Algorithm 3 Mutation-like operator. 

Define p mutation between 0 and 1 

for Each result of Crossover-like operator ( w = 1 , 2 ) do 

3: Generate a random value p m 

between 0 and 1 

for Each waypoint X 

c w 
k 

(except for initial and final waypoints) do 

if p m 

< p mutation then 

6: f lag ← 0 

while f lag = 0 do 

Generate a random waypoint X mutation 

9: Apply Hit-or-miss in (X 

c w 
k −1 

, X mutation ) and (X mutation , X 

c w 
k +1 

) 

if Both are V alid then 

X 

c w 
k 

← X mutation 

12: f lag ← 1 

end if 

end while 

15: end if 

end for 

end for 

3. Case study: the 3 R RR manipulator 

The 3 R RR planar manipulator is depicted in Fig. 4 . The manipulator is composed of three identical kinematic chains,

where each kinematic chain has one active ( R ), and two passive revolute joints (RR). Active joints are located at A i , i = 1 , 2 , 3 ,

while passive joints at B i and C i . The lengths of A i B i and B i C i are l i 1 and l i 2 , respectively. The distance between the center of

the workspace and A is a . The end-effector’s pose is represented by X = [ x, y, α] T , where ( x, y ) and α are the coordinates
i 
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Fig. 4. Geometrical scheme of the 3 R RR manipulator. 

 

 

 

 

 

 

 

 

 

of its center and its angular orientation, respectively. The distance between X and C i is represented by h . Variables θ i and

β i represent, respectively, the orientation of links A i B i and B i C i . The active joints inputs are � = (θ1 , θ2 , θ3 ) . In this model,

γ1 = 

π
2 , γ2 = 

11 π
6 and γ3 = 

7 π
6 . The model is based on [1] . The actuators’ inputs are calculated by: 

θi = 2 arctan 

( 

−e i 3 ±
√ 

e 2 
i 2 

+ e 2 
i 3 

− e 2 
i 1 

e i 1 − e i 2 

) 

, (18) 

where 

e i 1 = (x + h cos (α + γi ) − a cos (γi )) 
2 + (y + h sin (α + γi ) − a sin (γi )) 

2 + l 2 i 1 − l 2 i 2 , (19)

e i 2 = −2 l i 1 (x + h cos (α + γi ) − a cos (γi )) , (20) 

e i 3 = −2 l i 1 (y + h sin (α + γi ) − a sin (γi )) . (21) 

The ± sign in Eq. (18) refers to the manipulator’s working mode. In our simulations, it was considered negative for all

chains. The value of β i is calculated by: 

βi = arctan 

(
y + h sin (α + γi ) − a sin (γi ) − l i 1 sin (θi ) 

x + h cos (α + γi ) − a cos (γi ) − l i 1 cos (θi ) 

)
. (22) 

The relation of the time derivatives of the actuators’ inputs, ˙ �, with the time derivatives of the effector’s pose, ˙ X , can

be expressed by A ̇

 X = B 

˙ �, where each row of A is obtained by: 

A i = [ l i 2 cos (βi ) , l i 2 sin (βi ) , l i 2 h sin (βi − γi − α)] (23) 

and the nonzero elements of matrix B are obtained by: 

B ii = l i 1 l i 2 sin (βi − θi ) . (24) 

The singularities occur when the Jacobian matrices A and B are individually or simultaneously singular. In this paper,

only singularities of the matrix A (type II) are analyzed. As seen, the Jacobian matrix A is dimensionally heterogeneous,

because it relates translational ( ̇ x , ˙ y ) and rotational ( ̇ α) physical quantities. According to Alba-Gomez et al. [52] , the matrix

A can be homogenized by dividing its third column by the manipulators characteristic length, given by L c = 

√ 

2 h, as shown
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in Eq. (25) . The Jacobian’s normalization for non-symmetric manipulators may be done through the technique presented in

[53] . 

A 

′ = 

[ 

a 11 a 12 a 13 /L c 
a 21 a 22 a 23 /L c 
a 31 a 32 a 33 /L c 

] 

. (25)

Realistic ICN values can be calculated for the homogenized Jacobian matrix A 

′ . The ICN can be obtained by the ratio

between the smallest and the largest singular values of the normalized matrix A 

′ : 

ICN = 

min ν(A 

′ ) 
max ν(A 

′ ) , (26)

where ν( A 

′ ) are the singular values of the matrix A 

′ . 
In this case study, the impact of geometrical uncertainties in the length of manipulator’s links is evaluated. For the sake

of simplicity and without loss of generality, all other parameters remain constant. Each link is assumed to have a Gaussian

distribution N (μ, σ ) , where μ represents the mean and σ the standard deviation. In this way, l i 1 = N (0 . 191 m, 0.0 0 06) m

and l i 2 = N (0 . 232 m, 0.0 0 06) m, for i = 1 , . . . , 3 . It is also considered that a = 0 . 2598 m and h = 0 . 0597 m. Consequently, the

manipulator’s rotational symmetry is maintained. Every configuration in the workspace, except for those located in O , has

two symmetric equivalent configurations. Symmetrical configurations have the same probability of failure. When applicable,

this simple technique increases simulation efficiency. The probabilities of failure are computed using Eq. (5) . 

In each Monte Carlo simulation, n s = 40 , 0 0 0 random combinations of the uncertain variables are analyzed. The minimum

distance between the grid cells was r s = 0 . 005 m. Five values of α were employed in the Monte Carlo simulation and

metamodel design: α1 = −π
6 , α2 = − π

12 , α3 = 0 , α4 = 

π
12 and α5 = 

π
6 rad . It was also considered that C IC N = 0 . 1 . This value

was determined heuristically, as done also in [8] . In our simulations, during the ICN distribution fitting step, the Gaussian

distribution provided satisfactory results. Thus, Eq. (4) is rewritten as: 

P ICN = (1 − P W S ) 

∫ C IC N 

0 

1 

σ
√ 

( 2 π) 
e −

1 
2 ( 

ICN−μ
σ ) 2 dICN. (27)

A feedforward multi-layer perceptron neural network was used in the metamodelling step. The training data was divided

as 70% for network training, 15% for network validation and 15% for testing. Several topologies were analyzed and the

network with the best test performance had four hidden layers and seventeen neurons in each layer. All neurons of the

hidden layers had hyperbolic tangent activation function and the output layer has a linear activation function. The three-

fold symmetry of the 3 R RR manipulators was explored to determine the probability of failure of all configurations. 

Without loss of generality, both algorithms are performed for constant values of α. In the reliable/unreliable motion plan-

ning algorithms, the following values are adopted: p ga = 120 , n wp = 8 and p mut = 5% . The maximum number of generations

was defined as g max = 15 , 0 0 0 . For the computation of the penalties in Eq. (9) and Eq. (13) , v 1 = 10 and v 2 = 5 . Additionally,

λu = 0 . 1 and λr = 0 . 002 . The diagonal of M is [1 , 1 , 1 . 8 π ] . In the Mutation-like operator, v ar x = v ar y = 0 . 06 and v ar α = 0 (as

α is constant). 

4. Results 

This section describes the results obtained with the proposed strategy. The probabilities of failure are computed for

several configurations of a grid, considered a working mode. A failure map showing these probabilities in the workspace can

be plotted. The map depicts the regions of the workspace according to their respective probability of failure. This section

presents the results obtained by using the metamodel, the reliable motion planning algorithm and the unreliable motion

planning algorithm. 

4.1. Results - metamodelling 

Fig. 5 shows the failure map obtained using the ANN metamodel. Regions with a low probability of failure are repre-

sented in dark blue and regions with a high probability of failure are represented in yellow. White regions are out of the

workspace. There are three inaccessible white circles inside the workspace. When compared to the failure map generated

using Monte Carlo simulation, as shown by Vieira et al. [41] , one may note that the metamodel is able to appropriately esti-

mate the probabilities of failure. Moreover, it is computationally efficient. In fact, while the Monte Carlo simulation requires

approximately 8.7 s ( n s = 40 , 0 0 0 ) to estimate the probability of failure for one configuration, the metamodel requires 214 s

to estimate the probabilities of failure of approximately 1,33 billion configurations, an average of 16 μs per configuration.

These results suggest that the metamodel is suitable to be exploited in reliable motion planning algorithms. The complete

discussion about these results is presented in [41] and [43] . 

4.2. Results - reliable motion planning 

The results of the reliable motion planning algorithm are presented in Figs. 6 and 7 . The algorithm is summoned for two

tasks. In the first task, the manipulator starts in the configuration X 0 = [ −0 . 0450 , 0 . 2150 , π ] T and has its destiny located
6 



562 H.L. Vieira, E. Wajnberg and A.T. Beck et al. / Mechanism and Machine Theory 140 (2019) 553–566 

Fig. 5. Failure map estimated using the ANN metamodel, considering α = − π
6 

rad. 

Fig. 6. Maps and convergence graph obtained using the reliable motion planning algorithm in the first task. (For interpretation of the references to color 

in text, the reader is referred to the web version of this article.) 

Fig. 7. Maps and convergence graph obtained using the reliable motion planning algorithm in the second task. (For interpretation of the references to color 

in text, the reader is referred to the web version of this article.) 

Table 1 

Best solution X j obtained in the first task using the reliable motion planning. 

Pose X j 
1 

X j 
2 

X j 
3 

X j 
4 

X j 
5 

X j 
6 

X j 
7 

X j 
8 

ICN(X j 
k 
) 0.1264 0.1068 0.1052 0.1515 0.1993 0.1905 0.1227 0.1086 

P̄ F (X j 
k 
) 0.0001 0.0003 0.0022 0.0001 0.0002 0.0001 0.0001 0.0020 

 

 

 

 

 

 

 

 

 

 

in X 9 = [0 . 140 0 , −0 . 180 0 , π6 ] 
T . In the second task, X 0 = [0 . 210 0 , −0 . 0350 , π6 ] 

T and X 9 = [0 . 140 0 , −0 . 180 0 , π6 ] 
T . As previously

mentioned, α remained constant during motion planning. For each task, two maps are drawn: the probability of failure

and conditioning maps. Conditioning maps depict the workspace in terms of its conditioning. The map is drawn using

the nominal ICN of each configuration in the dense grid. Regions with high conditioning are represented in yellow, while

low conditioning in dark blue. Failure maps represent the workspace in terms of probabilities of failure. In these maps, high

probabilities of failure are represented in yellow while low probabilities in dark blue. The reliable trajectories are represented

by red lines and the solution’s waypoints are represented by green circles. 

As seen in Fig. 6 , the motion planning algorithm avoids the failures occurrences (yellow regions). Moreover, it aims to

reduce the total distance and the variance of the distance between waypoints as well. Table 1 shows the probabilities of

failure and ICN values of the solution’s waypoints. It can be seen that all ICN values are greater than the Reliable C IC N =
0 . 1050 , as desired. The probabilities of failure are low, varying from 0.01 to 0.2%, even in the center of the workspace. The
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Table 2 

Best solution X j obtained in the second task through the reliable motion planning. 

Pose X j 
1 

X j 
2 

X j 
3 

X j 
4 

X j 
5 

X j 
6 

X j 
7 

X j 
8 

ICN(X j 
k 
) 0.1095 0.1062 0.1125 0.1209 0.1118 0.1082 0.1070 0.1061 

P̄ F (X j 
k 
) 0.0001 0.0007 0.0001 0.0001 0.0001 0.0007 0.0014 0.0113 

Fig. 8. Maps and convergence graph obtained using the unreliable motion planning algorithm in the first task. 

Fig. 9. Maps and convergence graph obtained using the unreliable motion planning algorithm in the second task. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

average ICN and the probability of failure of the waypoints are, approximately, 0.1389 and 0.06%, respectively. In this case,

the optimization algorithm stopped when it reached the maximum number of generations (15,0 0 0). Fig. 6 c represents the

convergence graph of the algorithm. The algorithm starts to converge after approximately 5,0 0 0 generations. As can be seen,

the solution is still being improved when the simulation is stopped. The stopping criteria may be easily adjusted, allowing

the algorithm to keep improving the solution. 

Fig. 7 illustrates the results obtained in the second task. Once again the waypoints contour the yellow region avoiding

the regions with a high incidence of failures. Table 2 shows that all the waypoints have conditioning values greater than the

Reliable CICN . The probabilities of failure vary from 0.01 to 1.13%. In the case of waypoint X 

j 
8 
, an alarming value of probability

of failure approximately 1.13% was obtained. This may be overcome by increasing the maximum number of generations or

adding some penalty to the cost function when a waypoint has a probability of failure greater than some threshold, similarly

as done using Eqs. (9) and (13) . The approximate average ICN and the probability of failure are, respectively, 0.1103 and

0.18%. The algorithm stopped after reaching the maximum number of generations. The convergence graph, shown in Fig. 7 c

shows that the solution is being considerably improved when the algorithm stops, after achieving the maximum number of

generations. If results like this are continuously obtained, one may increase the maximum number of generations in order

to allow the optimization go further and provide better results. 

4.3. Results - unreliable motion planning 

The unreliable motion planning algorithm solutions are displayed in Figs. 8 and 9 . The probabilities of failure are not used

in the optimization. Still, they are computed for the sake of comparison between both reliable and unreliable methods. The

same tasks performed in the reliable motion planning algorithm are repeated. In Fig. 8 , the result seems to avoid regions

with a high probability of failure. However, that is not true. Most of these regions have only low conditioning values. In fact,

the algorithm is avoiding low conditioning regions. Table 3 shows that the algorithm may assume configurations with very

high probabilities of failure, exemplified by X 

j 
1 

and X 

j 
8 
, with a probability of failure of 30.11 and 34.24%, respectively. For this

solution, the average values of conditioning and probability of failure are 0.1497 and 8.12%, respectively. While the average

conditioning value is a little greater than the one resulting from the reliable motion planning, the average probability of

failure is unbearable. In this case, the solution was obtained with 12,350 generations. Fig. 8 c demonstrates that the algorithm

starts to converge after approximately 3200 generations and only minor improvements are obtained afterward. 
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Table 3 

Best solution X j obtained in the first task using the unreliable motion planning. 

Pose X j 
1 

X j 
2 

X j 
3 

X j 
4 

X j 
5 

X j 
6 

X j 
7 

X j 
8 

ICN(X j 
k 
) 0.1007 0.1252 0.1797 0.2185 0.2021 0.1651 0.1052 0.1008 

P̄ F (X j 
k 
) 0.3011 0.0001 0.0001 0.0001 0.0001 0.0001 0.0057 0.3424 

Table 4 

Best solution X j obtained in the second task using the unreliable motion planning. 

Pose X j 
1 

X j 
2 

X j 
3 

X j 
4 

X j 
5 

X j 
6 

X j 
7 

X j 
8 

ICN(X j 
k 
) 0.1235 0.1021 0.1201 0.1421 0.1391 0.1298 0.1002 0.1014 

P̄ F (X j 
k 
) 0.0001 0.0387 0.0001 0.0001 0.0001 0.0001 0.4562 0.2316 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 and Table 4 depict the result obtained in the second task. In this case, the algorithm assumed as solution con-

figurations that can achieve a probability of failure of up to 45.62%. This is alarming and shows the importance of reliable

motion planning techniques. The solution presented an average conditioning of 0.1198 and an average probability of failure

of 9.09%. Comparing both techniques, the unreliable motion planning provided only a slightly better conditioning but a much

great value of probability of failure. The algorithm delivered the solution after 13,598 generations. As verified in Fig. 9 c, the

algorithm was still improving the solution when it was interrupted. This is easily seen in Fig. 9 a and b. As aforesaid, the

solutions may be improved by increasing the maximum number of generations. 

5. Conclusions 

This paper presented a reliable motion planning algorithm for parallel manipulators. Considering two failure modes, a

Monte Carlo simulation is performed in order to understand the impact of uncertainties in the manipulator’s conditioning.

Probabilities of failure are computed for several configurations in the workspace. These probabilities are used in the design

of a metamodel based on artificial neural networks. The metamodel is able to efficiently estimate probabilities of failure

for any configurations in the manipulator’s workspace. The metamodel is combined with an iterative strategy that exploits

genetic operators in order to determinate (sub)optimal trajectories connecting two configurations. A 3 R RR manipulator was

used as a case study. The results demonstrated that the manipulator avoids not only low conditioning regions but also

regions with high incidence of failures. Lastly, the proposed technique can be easily adapted for different applications. An

outcome of this paper is the importance of using reliable motion planning techniques. In the case study, only uncertainties

in the links were considered. Even using a few uncertain parameters, our results show that unreliable techniques may lead

to low-performance solutions or even drive the manipulator to singularities. Despite the fact that the technique was applied

to fixed orientations, it is not limited to this assumption. In this case, some aspects need to be taken into account. Firstly,

the metamodel must be properly designed to estimate the probability of failure for the adopted range of α. For instance,

the metamodel presented here was designed to work in orientations between −π
6 and 

π
6 . Secondly, since the technique

uses the distance between samples in the cost function, it is necessary to specify how α is considered in distance. Lastly,

if the Reliable CICN is used, an interpolation technique or metamodel may be needed to estimate it for the entire range of

α. Remember that the Reliable CICN was computed only for few values of the orientation. If this is not possible, it can be

substituted by the CICN . This slightly increases the usable workspace but also increases the technique’s computational cost

and the average probability of failure of the usable workspace. 
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